cctbx.examples.exp_i_alpha_derivatives module¶
- class cctbx.examples.exp_i_alpha_derivatives.exp_i_alpha_sum(alphas)¶
Bases:
object
- d2_alphas()¶
Mathematica: D[f,alpha,alpha]
- d2_target_d_alphas(target)¶
Product rule applied to da * d.real + db * d.imag.
- d_alphas()¶
Mathematica: D[f,alpha]
- d_target_d_alphas(target)¶
Rule for derivatives of sum of roots of unity.
- f()¶
Mathematica: f=Exp[I alpha]
- class cctbx.examples.exp_i_alpha_derivatives.least_squares(obs, calc)¶
Bases:
object
- da()¶
Mathematica: D[f,a]
- daa()¶
Mathematica: FortranForm[FullSimplify[D[f,a,a]]]
- dab()¶
Mathematica: FortranForm[FullSimplify[D[f,a,b]]]
- db()¶
Mathematica: D[f,b]
- dbb()¶
Mathematica: FortranForm[FullSimplify[D[f,b,b]]]
- f()¶
Mathematica: f=(obs-Sqrt[a^2+b^2])^2