cctbx.examples.exp_i_alpha_derivatives module

class cctbx.examples.exp_i_alpha_derivatives.exp_i_alpha_sum(alphas)

Bases: object

d2_alphas()

Mathematica: D[f,alpha,alpha]

d2_target_d_alphas(target)

Product rule applied to da * d.real + db * d.imag.

d_alphas()

Mathematica: D[f,alpha]

d_target_d_alphas(target)

Rule for derivatives of sum of roots of unity.

f()

Mathematica: f=Exp[I alpha]

class cctbx.examples.exp_i_alpha_derivatives.least_squares(obs, calc)

Bases: object

da()

Mathematica: D[f,a]

daa()

Mathematica: FortranForm[FullSimplify[D[f,a,a]]]

dab()

Mathematica: FortranForm[FullSimplify[D[f,a,b]]]

db()

Mathematica: D[f,b]

dbb()

Mathematica: FortranForm[FullSimplify[D[f,b,b]]]

f()

Mathematica: f=(obs-Sqrt[a^2+b^2])^2