cctbx.examples.g_exp_i_alpha_derivatives module¶
- class cctbx.examples.g_exp_i_alpha_derivatives.curvatures(alpha_alpha, alpha_g, alpha_ffp, alpha_fdp, g_ffp, g_fdp)¶
Bases:
object
- class cctbx.examples.g_exp_i_alpha_derivatives.g_exp_i_alpha_sum(params)¶
Bases:
object
- d2_params()¶
- Mathematica:
D[f,alpha,alpha]; D[f,alpha,g]; D[f,alpha,ffp]; D[f,alpha,fdp] D[f,g, alpha]; D[f,g, g]; D[f,g, ffp]; D[f,g, fdp] D[f,ffp, alpha]; D[f,ffp, g]; D[f,ffp, ffp]; D[f,ffp, fdp] D[f,fdp, alpha]; D[f,fdp, g]; D[f,fdp, ffp]; D[f,fdp, fdp]
- Zeros/non-zeros in upper triangle:
- … .
- 0 . .
- 0 0
0
- d2_target_d_params(target)¶
Product rule applied to da * d.real + db * d.imag.
- d_params()¶
Mathematica: D[f,g]; D[f,ffp]; D[f,fdp]; D[f,alpha]
- d_target_d_params(target)¶
Rule for derivatives of sum of roots of unity.
- f()¶
Mathematica: f=g Exp[I alpha]
- class cctbx.examples.g_exp_i_alpha_derivatives.gradients(alpha, g, ffp, fdp)¶
Bases:
parameters
- cctbx.examples.g_exp_i_alpha_derivatives.pack_gradients(grads)¶
- cctbx.examples.g_exp_i_alpha_derivatives.pack_parameters(params)¶