cctbx.examples.g_exp_i_alpha_derivatives module

class cctbx.examples.g_exp_i_alpha_derivatives.curvatures(alpha_alpha, alpha_g, alpha_ffp, alpha_fdp, g_ffp, g_fdp)

Bases: object

class cctbx.examples.g_exp_i_alpha_derivatives.g_exp_i_alpha_sum(params)

Bases: object

d2_params()
Mathematica:

D[f,alpha,alpha]; D[f,alpha,g]; D[f,alpha,ffp]; D[f,alpha,fdp] D[f,g, alpha]; D[f,g, g]; D[f,g, ffp]; D[f,g, fdp] D[f,ffp, alpha]; D[f,ffp, g]; D[f,ffp, ffp]; D[f,ffp, fdp] D[f,fdp, alpha]; D[f,fdp, g]; D[f,fdp, ffp]; D[f,fdp, fdp]

Zeros/non-zeros in upper triangle:
… .
0 . .
0 0

0

d2_target_d_params(target)

Product rule applied to da * d.real + db * d.imag.

d_params()

Mathematica: D[f,g]; D[f,ffp]; D[f,fdp]; D[f,alpha]

d_target_d_params(target)

Rule for derivatives of sum of roots of unity.

f()

Mathematica: f=g Exp[I alpha]

class cctbx.examples.g_exp_i_alpha_derivatives.gradients(alpha, g, ffp, fdp)

Bases: parameters

cctbx.examples.g_exp_i_alpha_derivatives.pack_gradients(grads)
cctbx.examples.g_exp_i_alpha_derivatives.pack_parameters(params)
class cctbx.examples.g_exp_i_alpha_derivatives.parameters(alpha, g, ffp, fdp)

Bases: object

as_list()