cctbx.examples.structure_factor_derivatives_2 module¶
- class cctbx.examples.structure_factor_derivatives_2.gradients(site, u_iso, occupancy, fp, fdp)¶
Bases:
object
- cctbx.examples.structure_factor_derivatives_2.pack_gradients(grads)¶
- cctbx.examples.structure_factor_derivatives_2.scatterer_as_g_alpha(scatterer, hkl, d_star_sq)¶
- cctbx.examples.structure_factor_derivatives_2.scatterer_as_list(self)¶
- cctbx.examples.structure_factor_derivatives_2.scatterer_from_list(l)¶
- class cctbx.examples.structure_factor_derivatives_2.structure_factor(xray_structure, hkl)¶
Bases:
object
- as_exp_i_sum()¶
- d2_g_alpha_d_params()¶
Mathematica:
alpha = 2 Pi {h,k,l}.{x,y,z} g = w Exp[-2 Pi^2 u dss] D[alpha,x,x]; D[alpha,x,y]; D[alpha,x,z]; D[g,x,u]; D[g,x,w]” D[alpha,y,x]; D[alpha,y,y]; D[alpha,y,z]; D[g,y,u]; D[g,y,w]” D[alpha,z,x]; D[alpha,z,y]; D[alpha,z,z]; D[g,z,u]; D[g,z,w]” D[alpha,u,x]; D[alpha,u,y]; D[alpha,u,z]; D[g,u,u]; D[g,u,w]” D[alpha,w,x]; D[alpha,w,y]; D[alpha,w,z]; D[g,w,u]; D[g,w,w]”
This curvature matrix is symmetric. All D[alpha, x|y|z, x|y|z|u|w] are 0.
D[g,u,u] = (4 dss^2 Pi^4) w Exp[-2 Pi^2 u dss] D[g,u,w] = (-2 dss Pi^2) Exp[-2 Pi^2 u dss] D[g,w,w] = 0
- d2_target_d_params(target)¶
Combined application of chain rule and product rule. d_target_d_.. matrix:
aa ag a’ a” ga gg g’ g” ‘a ‘g ‘’ ‘” “a “g “’ “”
Block in resulting matrix:
xx xy xz xu xw x’ x” yx yy yz yu yw y’ y” zx zy zz zu zw z’ z” ux uy uz uu uw ‘’ ‘” wx wy wz wu ww “’ “” ‘x ‘y ‘z ‘u ‘w ‘’ ‘” “x “y “z “u “w “’ “”
- d_g_alpha_d_params()¶
Mathematica: alpha = 2 Pi {h,k,l}.{x,y,z} g = w Exp[-2 Pi^2 u dss] D[alpha,x]; D[alpha,y]; D[alpha,z]; D[g,u]; D[g,w]”
- d_target_d_params(target)¶
- f()¶